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Abstract— Every JPL flight mission relies on activity planning 
and sequence generation software to perform operations. Most 
such tools in use at JPL and elsewhere use attribute-based 
schemas or domain-specific languages (DSLs) to define 
activities. This reliance poses user training, software 
maintenance, performance, and other challenges. To solve this 
problem for future missions, a new software called Blackbird 
was developed which allows engineers to specify behavior in 
standard Java. The new code base has over an order of 
magnitude fewer lines of code than other JPL planning 
software, since no DSL or schema interpreter is needed. The 
use of Java for defining activities also allows mission adapters 
to debug their code in an integrated development environment, 
seamlessly call external libraries, and set up truly multi-
mission models. These efficiency gains have significantly 
reduced the amount of development effort required to support 
the software. This paper discusses Blackbird’s design, 
principles, and use cases. 

Within a year of its completion, six projects have begun using 
Blackbird. The Mars 2020 mission is using Blackbird to 
generate command sequences for cruise and Mars approach. 
By using multi-mission models, the Mars 2020 cruise 
adaptation was created in fewer than three months by three 
engineers at less than half time each. Work has begun to use 
Blackbird for communications planning during Mars 2020 
surface operations.  The Psyche mission uses Blackbird to 
generate its reference mission plans in development. Full 
simulations with 123,000 activities and 4.7 million resource 
value changes complete in about one minute. Psyche is also 
working towards using Blackbird in operations to support 
integrated activity planning and generate sequences. The 
InSight project is using Blackbird for mission planning in 
operations, replacing error-prone manual processes. For the 
NISAR mission, Blackbird evaluates threats to the 
commissioning phase timeline. The Europa Lander pre-project 
used Blackbird to perform a trade study. The ASTERIA 
mission is automating sequence generation in Blackbird. Going 
forward, more interested projects are likely to begin using 
Blackbird, and the capabilities of the core and multi-mission 
models will keep growing. 
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  1. INTRODUCTION  
Every deep-space mission must solve a variety of planning 
problems throughout development and operations, and 
systems-level simulation is typically employed to validate 
the resulting plans. While the problems are unique to each 
mission, there are typically broad similarities between them 
that have driven the creation of persistent and sometimes 
even multi-mission planning frameworks whose goals are to 
best enable accurate and timely formulation and disposition 
of plans. One common trait among these is that they 
encapsulate spacecraft behaviors as ‘activity types’, which 
define to the simulation engine the effect an activity 
instance of that type should have on the results. Activities 
can write commands to output sequences to send to the 
spacecraft, impact resources such as battery state of charge 
or data volume, or give a user context they can use to make 
better decisions. The choice of how to define activity types 
is important, since the definitions should be intuitive and 
easy to modify, easily understood by the simulation engine, 
and expressive enough to fully capture the effects of the 
activity. 

Most activity planning software in use at NASA’s Jet 
Propulsion Laboratory (JPL) and elsewhere in the space 
operations community, such as APGen [1], ASPEN [2], 
MSLICE [3], COCPIT, SPIKE [4], PAGE, MAPPS [5], and 
more, use domain-specific languages (DSLs) or attribute-
based schemas to define constraints on activities and their 
behavior. This reliance on interpreting custom languages 
poses user training, core software maintenance, 
performance, extensibility, and other challenges, as 
explained in a following section. There have been 
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frameworks that constructed parts of this definition in 
standard programming languages – for instance, the MOST 
scheduler used by the Philae team in 2015 was backed by 
the ILOG Scheduler, which places activities based on 
constraints defined in standard C++ [6]. The planning tool 
CLASP being used for the NASA-ISRO Synthetic Aperture 
Radar (NISAR) mission’s science phase uses a mixture, 
where spacecraft information is defined in a schema while 
custom scheduler logic can be written in C++ [7]. In 2017, 
Pierre Maldague proposed an extension to APGen called 
A++, where the user would define each Turing-complete 
activity in C++. In early testing, this change resulted in an 
order of magnitude speed improvement and demonstrated 
the potential of defining behavior in a standard 
programming language.  

In part inspired by that work, in early 2018 a team of 
planning and software engineers at JPL began working on a 
new simulation environment that was to be as lightweight 
and easy to maintain as possible with an emphasis on user 
experience. Out of that effort came Blackbird, a Java-based 
object-oriented discrete event simulator intended as a multi-
mission spacecraft simulation framework that enables 
engineers to write code in a standard language that is 
executed directly by an industry-standard environment. 
Within a year of its introduction, six projects had begun to 
use Blackbird to solve a variety of critical planning 
problems. This paper discusses the research and principles 
behind, the design of, and the mission use cases of 
Blackbird.  

  2. USER RESEARCH   
As the idea for Blackbird began to solidify, the development 
team performed extensive research that took into 
consideration the use cases of seven JPL missions. This 
section presents some of the ideas learned from that effort 
and the resulting actions taken. 

 Problems with Schema and DSL-based Activity Definitions 

When implemented well, DSLs and schemas allow for users 
to provide specifications for a model with significantly less 
code, which can reduce cost and make the code more 
readable [8]. The use of a DSL can also reduce the computer 
science knowledge needed by adapters. However, the use of 
DSLs or schemas shifts the responsibility for the 
optimization, maintenance, and development more onto the 
developers of the core software, which leads to significantly 
more challenging and costly development of the core 
software [9]. Over time, the increased difficulty maintaining 
the software leads to challenges finding developers to 
maintain and improve the core, which in turn makes the 
software more painful to use by mission adapters. 

Writing code for planning and simulation frequently 
requires the use of complex logic, which includes the use of 
data structures, conditionals, loops, functions, and calls to 
external models or scripts. However, both schemas and 
DSLs limit the capabilities offered to adapters, and any 

increase in capability requires significant effort on the part 
of the developers of the core software. For example, a 
schema for defining a data model might start with an 
attribute for “amount of data generated” for a given activity. 
But then, a requirement might get added for representing 
data volume generated given a data rate and a period of 
time. Now, attributes must be added for data rates and 
durations. Next, a requirement could get added that an 
activity should be able to look up the data generated in a 
table, or call a script to calculate the data generated by an 
activity. These feature requests are very common in 
planning and simulation, and each mission using a schema 
for this purpose needs to account for them. Over time, there 
is a trend towards arbitrarily complex behavior needing to 
be represented, which can lead to hard-to-maintain 
workarounds if the core code is not designed with this idea 
in mind. 

The Mars Science Laboratory (MSL) and Mars 2020 
missions both use schemas in their activity dictionaries, 
which define the model used for planning and simulation. 
MSL’s MSLICE software uses an Extensible Markup 
Language (XML)-based schema to define activities and 
models. However, even after adding several capabilities to 
the MSLICE schema, a feature to inject arbitrary JavaScript 
code into the XML was required to meet all of the feature 
requests. This made the schema very difficult to work with, 
both from a usability and maintainability perspective, since 
that JavaScript cannot be debugged normally. The Mars 
2020 software COCPIT is still in development, but a 
JavaScript capability has already been added into its schema 
for math calculations. 

The APGen planning software, which has been used 
successfully for 10 missions in operations and development, 
has a DSL which evolved over many years due to similar 
scope increases. It too started as a schema-like 
representation of activities and their simple impacts to 
resources, but evolved over time into a Turing complete 
language capable of arbitrary complexity [1]. Despite 
adding this capability, mission adapters still have to write a 
significant amount of code to replicate functions available in 
libraries found in common languages. For example, APGen 
does not have uppercase or lowercase methods, so adapters 
need to define their own functions which parse a string and 
return an uppercase or lowercase version of it. There are 
more complicated cases of this that can involve thousands of 
lines of code. In APGen adaptations, methods for simple 
conversions are sometimes duplicated under different names 
due to lack of standard libraries and the complexity of the 
custom adaptation. As will be discussed later in the paper, 
the performance of these tools has also been an issue. 

The scope creep seen in the current DSLs and schemas at 
JPL makes maintaining them costly, and finding developers 
with the right expertise is challenging. There is currently 
only a single APGen core developer, and MSLICE has 
required multiple developers since it began to be used in 
operations to support the core software and schema. In 
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addition, training to become a capable adapter of the 
MSLICE activity dictionary schema takes about six months 
and requires previous familiarity with the problem space. 
The transferability of the knowledge gained from working 
on both the core software or the mission-specific 
adaptations has also been a factor in finding developers. 
Using a schema or DSL is specific to the application, and 
cannot be easily applied to another role, so many developers 
hesitate before making a long commitment to create or 
maintain these types of software. 

Lastly, the use of a schema can obfuscate the underlying 
system model, and users may not understand how activity 
types they are creating impact the larger system, which 
could lead to incorrect simulation results. A common 
solution to this, which Mars 2020 has chosen, is to limit the 
complexity of the system model, but there are many benefits 
of having a detailed model. For example, Europa Clipper’s 
high-fidelity APGen model has been instrumental in the 
design of the spacecraft and the mission [10], and would not 
be possible with a simplistic schema. 

JPL Mission Use Cases 

Blackbird was designed with a well-understood set of use 
cases in mind, and priority was given to missions currently 
in development or operations. Generally, Blackbird use 
cases can be broken into three major categories: planning, 
simulation, and sequence generation. Blackbird is not the 
first project to address these problems, and its developers 
heavily leveraged the lessons learned from past software. 

The first category, planning, is done during all phases of a 
JPL mission’s life cycle. Planning involves the scheduling 
of various activities or events over a period of time. Prior to 
mission operations, this work is largely mission planning, 
which encompasses the higher-level design and scheduling 
of mission activities. Mission planning has been done by 
hand for many missions, but newer missions are making use 
of software to mostly automate this type of work. Mission 
planning work often continues throughout operations, but in 
parallel to activity planning, which is done on a shorter time 
scale with more detail. Activity planning usually involves 
more human-in-the-loop coordination, but is gradually 
moving towards letting software optimize a plan, where 
users provide constraints rather than specific times when 
activities will occur. Modern operations efforts typically 
now involve plans that are a combination of automatically 
placed and user-defined activities. Activity planning 
software must enable such a mixture to fully support 
mission design and operations. 

The second category, simulation, generally involves 
representing the behavior of a system over time. Like 
planning, simulation can be done at many levels of fidelity. 
The purpose of the simulation is to validate that the plan 
meets the requirements put on it, and that it will keep the 
spacecraft in a safe and expected state throughout execution. 
Thus, the level of detail of the results needed by the project 
drives the model fidelity, which can evolve along with the 

mission phase. Simulation is often done in parallel with 
planning, but does not have to be. The calculations involved 
in a simulation can often be time-consuming to perform, at 
times taking several minutes or hours to complete. Common 
bottlenecks during a simulation include calculating 
geometric information, thermal modeling, or tracing the 
execution of commands. 

The last category of use cases for Blackbird, sequencing, 
refers to the auto-generation of sequences of spacecraft 
commands based on an activity plan. Sequence generation is 
usually reserved for missions in late development or 
operations, but it is a mission-critical part of those phases of 
JPL missions, and must be addressed to successfully operate 
a spacecraft. Although different JPL spacecraft often have 
analogous functions, the format and contents of the 
commands and sequences can be drastically different, due to 
their connection to spacecraft flight software. The 
generation of these sequences ranges from completely 
automated to hand-generated, and the software supporting 
operations must account for the fact that not all sequences 
will be generated in the same way. 

Planning, simulation and sequencing make up the majority 
of the uplink portion of spacecraft operations. The other half 
of mission operations, downlink, involves analyzing 
telemetry and assessing spacecraft health and safety. There 
typically is a need to update simulations and activity plans 
based on spacecraft telemetry. For example, a power model 
must be updated with a new battery state of charge when 
telemetry is received from the spacecraft. This handoff 
between downlink and uplink is a common problem across 
missions, and must be supported. Uplink software typically 
does not read spacecraft telemetry directly, but uses curated 
subsets of it as initial conditions for future simulation runs. 

There are two general types of users of planning systems: 
operators and adapters. Operators are typically systems 
engineers or engineers with domain-specific knowledge, and 
will often have little software experience. A common 
requirement is for these users to be able to interact with a 
planning system without looking at or writing code. To 
support the use case of operators, missions always wrap the 
underlying scheduling and simulation component in a full 
planning system with graphical user interfaces (GUIs), 
command line capability, and reporting tools. In order to 
limit scope, Blackbird was designed with this paradigm in 
mind, and operators only interface with the larger mission-
specific planning system which incorporates Blackbird. 

Adapters are users who write mission-specific code which 
defines the behavior of the spacecraft in a simulation, as 
well as the activities that can be performed by the 
spacecraft. Adapters are therefore the type of users who 
interface directly with Blackbird. Adapters can range from 
having a strong background in computer science to having 
no prior exposure to software engineering, as is the case for 
many engineers defining models in Blackbird. There are 
some cases where adapters also go on to be some of the 
operators of the planning system. 
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Mission-Driven Development of Blackbird 

The core code of Blackbird was designed and completed 
over a period of four months, with another four months 
creating multi-mission spacecraft models and proof-of-
concept mission-specific adaptations. Within one year of 
that, six missions had already begun to use Blackbird to 
solve a variety of critical problems. This rapid development 
was made possible by an agile development process and 
developing entirely from the bottom up. Throughout its 
development, parts of the code were being refined as 
requirements evolved, and the code was developed with the 
expectation that future changes would be required. 

The scope of development and the deadlines were driven by 
JPL mission needs, with fixed schedules from launch dates 
and critical reviews, leaving no room for delays in the 
deliveries. The main requirements of Blackbird were driven 
by the use cases of the Psyche, Europa Lander, Europa 
Clipper, Interior Exploration using Seismic Investigations 
Geodesy and Heat Transport (InSight), Mars 2020, Juno, 
and Mars Reconnaissance Orbiter (MRO) missions, and all 
of the features necessary for these missions were completed 
in the first four months of development. During and after 
this process, it was required to demonstrate that Blackbird 
was an improvement over previous software in accuracy, 
capability, ease of use, performance, and maintainability 
before it could be adopted by missions.  

Early on in the development of Blackbird, extensive 
interviews with operators and developers on the missions 
listed above took place. In addition to this, the developers of 
Blackbird had worked on the APGen adaptations of several 
of these missions, which contributed to the overall 
requirements and concept of operations. Across all operators 
and developers of JPL planning and simulation software, the 
most common theme was the importance of usability, which 
was mentioned even more than performance or 
maintainability. In addition to this, operators expressed 
frustration when the software was designed with specific 
assumptions about the way it would be used, which often 
led to arduous workarounds to make the software meet 
common use cases on missions. Blackbird was designed to 
avoid these sorts of assumptions, and leaves room for 
mission adapters to extend the framework to meet any need. 

  3. BLACKBIRD SOFTWARE DESIGN  
Design Principles 

During its development and completion, the Blackbird 
developers had in mind some principles which ended up 
being the key to its rapid success. 
 
a. Programmer efficiency is not only a nice-to-have—Any 
other criteria one could use for evaluating a framework like 
security, performance, extensibility, etc., are so enhanced by 
developers being able to work efficiently that it is of 
paramount importance to create an intuitive development 
environment. All the mission work mentioned in the rest of 

the paper was only possible to do quickly because Blackbird 
adheres to this principle.  

b. Gall’s Law—“A complex system that works is invariably 
found to have evolved from a simple system that worked. A 
complex system designed from scratch never works and 
cannot be patched up to make it work. You have to start 
over with a working simple system” [11]. Blackbird was 
designed to be as simple as possible; the core codebase is 
less than 10,000 lines of code including frequent comments 
and whitespace, whereas other planning tools like APGen, 
ASPEN, and MSLICE all have well over 100,000 lines of 
code in their cores. The simplicity meant the program was 
quick to form and start meeting mission needs. This 
simplicity also translates directly into maintainability, since 
a new developer will have much less to learn. A common 
reason for the gradual degradation of multi-mission tools is 
having 5-12 developers build the system then only keeping 
one developer once it is in ‘maintenance mode’. Blackbird 
was primarily built by two developers in four months at 
half-time each, so there will be less of this kind of drop-off 
issue.  

c. Design from the bottom-up, not top-down—Mission 
planners and schedulers are the ones who know their needs 
best, and so the top priority should be meeting those and not 
trying to impose a technology then fitting it to the need. 
Blackbird was developed grassroots from the people doing 
development and operations work.  

d. Inherit Proven Ideas, Not Legacy Code—Blackbird’s 
high-level design and how it conceptualizes activities and 
resources are inherited from APGen, which has been used 
successfully on over 10 missions. This similarity lessened 
the possibility that any key use case was overlooked by the 
requirements, or that simple ideas were getting over-
complicated. However, a conscious decision was made not 
to double or triple the size of the code base in order to be 
backwards compatible and support adaptations written in the 
APGen DSL. In addition to making the core significantly 
less maintainable, supporting the DSL would hinder the 
transition to an efficient development. The need to rewrite 
key multi-mission models was a positive impetus to 
improve their code quality and make them more performant. 

e. Make Truly Multi-Mission Code—Write every piece of 
potentially multi-mission code as if you personally will have 
to use it to support multiple missions. This means writing 
requirements from the holistic combination of all potential 
customer missions’ use cases, not taking literal requirements 
from any one mission. Design interfaces so that mission 
engineers can do planning how they feel most comfortable, 
instead of presupposing how a mission should do planning. 
Sections 4 and 5 will detail the time saved by multiple 
missions using the same code. Blackbird itself owes its 
viability to open source software, as well as the multi-
mission tool Resource and Activity Visualization Engine 
(RAVEN), which was built before Blackbird existed but 
was generic enough to be extremely useful to Blackbird 
users without any modifications. 
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Figure 1. Adaptation Symbol Glossary used in diagrams 
throughout this paper. Each symbol has a short 

explanation of what it represents above it. Activities that 
just set resources will be represented as simple rectangles.  

f. Avoid Boilerplate and Favor Readable Code—Help 
developers writing in your framework create as little non-
business-logic as possible. 

Blackbird Overview 

Blackbird ‘core’ is a discrete event simulation engine with 
scheduling and sequence generation capabilities. The events 
that are added to the timeline are Java thread objects, which 
when executed contain activity behavior defined in specific 
ways. The Blackbird framework provides basic classes that 
engineers can extend; those base classes contain 
minimalistic machinery that governs the order in which 
activity instances are processed, how information appears in 
output files, how one can interact with the model, and more. 
One partially analogous framework to Blackbird is 
MATLAB, which provides useful extra functions for 
common tasks in a specific domain, while also providing an 
execution environment that processes the defined constructs.  
 
An ‘adaptation’ refers to a set of subclasses that define the 
behaviors of a spacecraft and their effects. In addition to 
those classes, missions have choices for how they interface 
with the .jar compiled file. A typical output format is a 
standard Time-Ordered-List (TOL), which can contain all 
the activities and resource changes in the engine’s memory.  
 
Framework Constructs 

The two classes most fundamental to Blackbird are Activity 
and Resource. Most of the work of an adapter is extending 
Activity to create specialized activities that set Resource 
objects appropriately. A plan consists of a set of time-tagged 
Activity instances, and the simulation results are the 
Resource value histories throughout the plan.  

An Activity is a human-level abstraction of a spacecraft 
behavior, or a behavior that affects the spacecraft. 
Spacecraft behaviors are processes like performing a 
Trajectory Correction Maneuver, beginning transmitting 
data to earth, or collecting science data. The environment 
can influence the spacecraft in ways such as ground station 
availability, the amount of charged particle impingement on 
solar arrays, or temperatures that affect how much heater 
energy the spacecraft will need. For clarity, one can speak 
of ‘activity types’ and ‘activity instances.’ An activity type 
is the definition of what the planning engine should do when 
an activity instance of that type is placed. An activity 
instance is the union of an activity type, a start time, and any 
other parameters the type requires to know how to behave. 
In order to create an activity type in Blackbird, one must 
extend an Activity superclass and implement between one 
and five methods: model() controls how activities impact 
resources, decompose() provides a way to create child 
activities outside of simulated time, dispatchOnCondition() 
provides a way to create child activities during simulation, 
setCondition() controls the condition for the dispatch, and 
sequence() controls how the activity writes to sequences. 
The methods available in the Activity class equally support 
multiple scheduling paradigms: one where adapters 

explicitly specify the algorithm by which to place child 
activities, another where adapters tie activity creation to 
resource changes, and a third where requests and constraints 
are passed to a depth-first-search based constraint satisfier. 

Resources should be thought of as variables that remember 
the times they were changed throughout the simulation. The 
class encapsulates the value, provides the equivalent of 
getter and setter methods, and provides the automation to 
write out its time history to the core output mechanisms. 
Due to the generic setup, any data type can be tracked in a 
resource, from Booleans to Times to quaternions. Blackbird 
also supports arrayed resources and automated resources 
that track values and update without needing an Activity. 

Blackbird supports active and passive constraint checking. 
Active constraint-based scheduling is done using the 
Condition class, which represents a resource comparison to 
a threshold. The Constraint class does passive constraint 
checking and is more useful for manually created plans that 
are not valid by construction. The Window class represents 
a beginning and end Time, and encapsulating it makes many 
common planning paradigms much more natural. To 
produce sequences, the Sequence class is also important. 

Notation Introduction and Worked Example 

Figure 1 contains the symbol glossary that will be used to 
build the structure diagrams of Blackbird code throughout 
the rest of the paper. Not all diagrams will be at the same 
level of detail, but ideally having a common icon set 
improves comprehension. These symbols may be color-
coded to indicate multi-mission components or those shared 
by multiple adaptations within a single mission.  
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Figure 2. An illustration of the state of the engine after different commands are sent to it.  
(a) Activity 1 is placed manually and decomposes into children activities 2-5. 

(b) Activities 1-5 are modeled and affect resource A over time.  
(c) A forward-dispatch scheduler places activity 6 during modeling when resource A is equal to a specific value. 

(d) Activity 6 is now part of the model and immediately starts affecting resource A. 
(e) Modeling is over, but resource values persist. Activity 7 is placed manually and decomposes into activity 8. 
(f) The sequence command is run. Activities 5 and 8 expand into commands which are a part of a sequence. 

 

Figure 2 represents an example Blackbird run that exercises 
decomposition, modeling, forward-dispatch scheduling, and 
sequence generation. The caption interprets the result of 
sending each command to the engine. 

Modularity 

Blackbird was designed so that each core class is well 
encapsulated, so that changes to the internal workings of 
each class should not affect the behavior of other classes. 
Each class has a small number of public methods that all 
other classes must go through, so implementation changes 
simply have to continue to meet the contract of those public 
methods. After Blackbird had been completed for a year, 
there was a desire to replace Blackbird’s original Time class 

with the Java version of the jpl_time library, which used a 
different backing data structure to store time values. 
Changing over to the new Time class only required 
changing 10 non-import lines of code in surrounding 
classes. As another example, currently Blackbird’s 
ActivityInstanceList is backed by an ArrayList. However, 
the ActivityInstanceList public methods for iteration, 
addition, and searching do not depend on that 
implementation. If in the future the team wanted to change 
out the backing structure to, for example, a TreeMap for 
faster searching, or a combination of ArrayList and 
HashMap for fast iteration and lookup, the code changes 
would be entirely confined to that less than 200 line-long 
class and would not affect any other classes in the code.  
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Figure 3. Speed scaling of APGen and Blackbird for 
representative identical test activities. 

Maintainability and Code Health 

Blackbird core was developed with current software 
development best practices in mind. Unit tests provide 80% 
line coverage of the entire core codebase as of October 
2019. All Blackbird changes go through a pull request 
process where another developer must approve the changes. 
There are generic regression tests that need to pass before 
pull requests can be merged, and most missions have 
mission-specific regression tests that are used to evaluate 
changes. The static code analyzer SonarQube is regularly 
run on the code and as of October 2019 it reports a technical 
debt ratio of less than 5% and zero bugs (there are 8 
intended false positives). There are Javadoc-style and inline 
comments frequently throughout the code. Doxygen, a 
standard documentation generator, has been set up to create 
reference pages and dependency diagrams. Mission adapters 
are encouraged but not forced to follow these best practices. 

Blackbird uses standard imports whenever possible and 
does not use custom data structures. The libraries that 
Blackbird depends on are all actively maintained and will be 
for the foreseeable future. The build process is defined in 
the software management tool Apache Maven and takes 
about 2 seconds, so rapid iteration is possible. To date, all 
core changes that missions have requested were 
implemented between half a day to two weeks after.  

Ease of Use 

Much of Blackbird’s ease of use derives directly from how 
adapters write code directly in an industry-standard 
programming language. Features such as an integrated 
development environment (IDE) with debugging, static code 
analysis, performance profiling, ease of calling external 
libraries, online reference resources, native test frameworks, 
formal dependency management, and more have all reduced 
development time and uncaught errors.  

Java has been GitHub’s second most-used language since 
2013 [13] and the first most-used on the TIOBE index since 
2015 [14], so new developers may already be familiar with 
it, and all adapters benefit from an active community and 
helpful resources. To create an activity in Blackbird, only a 
small subset of the full Java language is required, so even 
new adapters can make contributions quickly, then add more 
complex behavior as their proficiency grows. Blackbird 
adapters typically become proficient in about two weeks 
full-time. Blackbird adaptations listed in later sections all 
required people working only part-time for limited 
commitments, whereas traditionally missions need to 
dedicate at least one full-time person for years. If a project 
decides that they want to use another language to write their 
activities, they can seamlessly incorporate Python-like 
Groovy, JavaScript-like Kotlin, or Lisp-like Clojure, which 
can all inherit Blackbird’s Java base classes. Groovy and 
Kotlin proofs of concept were built which motivated 
multiple projects using Blackbird to consider partially 
switching to one of these other languages to further improve 
the new adapter experience. 

Based on experience training more than 10 people to use 
Blackbird, the largest impediments to ease of use are not the 
language syntax, but the use of an IDE for adapters without 
prior experience, and understanding when their adaptation 
code will execute as part of the simulation. One is not 
forced to use an IDE to develop in Blackbird, but the initial 
investment to learn to use one is often worth the reduced 
risk and improved productivity afterwards. Stepping 
through code in the debugger has greatly helped adapters 
understand when their code will be called, which will 
always be non-trivial for any complex system. There is a 
detailed adapter’s guide which walks new users through 
defining and deploying an adaptation. 

Performance 

Blackbird v2018-09 was put through a number of 
benchmarking tests to ensure that its performance would 
meet mission needs. It was primarily compared with APGen 
v34.5, since that is the tool the customer missions would 
have used if Blackbird were not available. The most 
intensive test involved both engines running exactly the 
same adaptation such that the time-ordered list output files, 
which contain the complete state of the engine at the end of 
execution, produced by APGen and Blackbird were exactly 
the same. This test exercised decomposition, modeling, 
function calls, referencing past resource values, constraint 
checking, pausing activity instances and resuming them 
later in simulated time, referencing global/public static 
variables, arithmetic, parameter passing, and file writing. 
The number of activities and resource usages were varied 
and the speed and memory impacts of that change was 
recorded. The results of the test are shown in Figure 3.  

 

In terms of speed, Blackbird scales with O(n) where n is the 
number of activities and resource usage nodes, whereas 
APGen scales with at least O(n2). For reference, large 
adaptations typically produce 150,000 activities that are 
much more complex than these test ones, creating millions 
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of resource records. At about that number of activities, 
APGen took about an hour to finish the simulation and write 
the file, whereas Blackbird took about 20 seconds. In terms 
of memory consumption, Blackbird scales with O(log(n)) in 
terms of number of activities and resource usage nodes, 
whereas APGen scales with O(n).  

Missions are seeing this speed increase for their real 
applications. When comparing the production APGen and 
test Blackbird Insight Cruise adaptations, it took Blackbird 
11 seconds to produce identical sequences as APGen, which 
took 49 seconds on the same machine, which is about 5x 
faster than the machine actually used in operations. The 
memory used by Blackbird was 155MB while 282MB was 
used by APGen. The speed it takes each mission’s 
adaptation to run is listed in the following sections, but none 
of them take over one minute, except for geometry resource 
generation for Psyche, which takes 8 minutes. A similarly 
complex geometry computation for a Europa Clipper task 
takes APGen multiple times longer.  

At least four factors contribute to these large differences in 
run speed and memory usage. 

a. Lack of Custom Interpreter Overhead—Blackbird allows 
simulation code to be executed directly by the Java Virtual 
Machine, which has been optimized for two decades by 
teams of programming language and compiler experts. A 
naïve interpreter executes a DSL’s instructions without 
branch prediction, loop unrolling, function inlining, and 
other industry standard compilation techniques [15]. 

b. Data Structure Scaling—Blackbird’s internal data 
structures were carefully chosen for optimal speed and 
memory footprint. As an important example, its resource 
histories are stored in a Java-standard red-black tree 
(TreeMap), which provides the O(log(n)) search for ordered 
data while providing O(log(n)) insertion. In contrast, 
APGen’s resource histories are stored in a custom data type 
that degenerates to O(n) iteration for common operations. 

c. Object-Oriented Referencing—In Blackbird, all internal 
structures and adaptation data are objects, so they can 
directly invoke methods of each other, whereas with a DSL 
events must be passed back to a monolithic interpreter 
which then decides what to invoke.  

d. Optimized Adapter Algorithms—Blackbird offers adapters 
freedom to optimize their code. While there are limited data 
structures available to adapters within a DSL, Blackbird 
adapters can easily use efficient data structures. In the 
APGen InSight cruise adaptation, there are several resources 
which have their values set by listening for changes to other 
resources. Each time one of the resources changes value, the 
algorithm in APGen loops through all resources being 
watched and checks their state. In Blackbird, custom 
automated resources keep track of the number of other 
resources which are in a certain state, removing the loop. 
This leads to optimized resources which are up to 50 times 
faster to evaluate in Blackbird than in APGen.  

  4. MULTI-MISSION MODELS AND PATTERNS  
Adapters working in the Blackbird framework have 
prioritized creating multi-mission code, which have grown 
into sophisticated and well-documented models that make it 
easy for missions to start doing complex work immediately. 
This section also presents design patterns that have emerged 
naturally in multiple adaptations based on the tools the 
framework provides.  
 
Multi-Mission Models 

 The Blackbird core software itself knows almost nothing 
about spacecraft – it could be used as part of a planning 
system in many different industries. When a new mission 
adopts Blackbird, it is desirable to have to reinvent as little 
of the wheel as possible and learn from past missions. 
Knowledge about spacecraft and infrastructure behavior is 
thus encoded in a set of multi-mission models, each of 
which is responsible for a different typical subsystem. For 
multiple adaptations, the multi-mission models are capable 
enough that the mission-specific code required is much 
smaller than the amount of multi-mission code the 
adaptation depends on. The list of multi-mission subsystems 
follows the set of APGen models that most notably Europa 
Clipper is currently using [10]: ground station, geometry, 
data, power, telecommunications, guidance navigation and 
control (GNC), propulsion, and more.  

In addition to the models, by which is meant the 
implementations of resource-setting and scheduling code for 
these subsystems, the Blackbird multi-mission project aims 
to provide a multi-mission Java interface for each subsystem 
that defines the methods needed to interact with a model of 
it. This way, even if no multi-mission model is provided for 
that subsystem currently, mission adaptations are forward-
compatible with moves to higher-fidelity models with no 
change to code for any activity types. This kind of 
encapsulation is only possible because the framework is 
object-oriented and flexible.  

The Blackbird multi-mission ground station model is the 
most sophisticated model in the current suite, and is the 
most critical for sequence generation tasks, which is one of 
the fundamental Blackbird use cases. The model is 
composed of 6,000 lines of code, which is about 2/3rd the 
size of Blackbird core itself. The ground station model 
offers the following capabilities for missions: view period 
and elevation generation from a variety of inputs, station 
allocation parsing and comprehension, spacecraft doppler 
mode transition tracking, spacecraft antenna state model, 
station allocation generation based on a depth-first-search 
constraint solver, output to common DSN formats, and 
built-in information about DSN stations. The Blackbird 
implementation of these is partially based on the 
corresponding APGen model, but was completely 
restructured for maintainability and is more advanced; for 
example, the Blackbird ground station model processes 
allocations for Delta-Differential One-way Ranging (delta-
DORs) correctly without the need for editing input files, and 
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Figure 4. Structure of section of multi-mission ground 
station model that simulates doppler transitions 

the APGen model does not allow for multi-mission 
parameterized track generation. Figure 4 diagrams the 
structure of the DSN multi-mission model when reading in 
files and providing doppler mode information to mission-
specific schedulers. 

 

The Blackbird multi-mission geometry model is another 
critical model, particularly to provide context and schedule 
activities in mission planning work. It makes heavy use of 
Blackbird’s native integration with NASA’s Navigation and 
Ancillary Information Facility (NAIF)’s Spacecraft 
ephemeris, Planetary ephemeris, Instruments, C Pointing 
Matrix, Event Info (SPICE) library in order to calculate 
geometric quantities of interest, such as: upleg and downleg 
time, spacecraft position and velocity with respect to 
different bodies, spacecraft orbit parameters, angles between 
different bodies or points on bodies, coordinates of 
subpoints on bodies, eclipse windows, occultation windows, 
and more. Each set of quantities can be queried at user-
specified timesteps, which can be fixed or variable so more 
samples are generated around less linear regions. For the 
latter, a desired tolerance can be provided that feeds into the 
determination of when the next timestep should be. 
Typically for mission planning work, once all geometry is 

computed, interpolating between points is sufficient, but 
those building operational tools would likely favor querying 
SPICE at exactly the time they are interested in.  

The Blackbird data model provided is medium-fidelity and 
conceptually similar to data models most APGen 
adaptations employ. Data is generated at set rates inside 
various prioritized bins, and activities can change those rates 
or make sudden changes to the volumes in the bins. For 
most missions to date, that level of detail is all that could be 
tracked due to imprecision in activity definitions and 
generation of simulation initial condition files. The main 
purpose of the model is not to track all data products 
onboard at any given time, but for each downlink pass 
provide an estimate of how much data is expected to be 
downlinked from what instruments, and how much will be 
left onboard.  

The multi-mission models live in a different repository from 
Blackbird core and are packaged separately, so missions can 
import only the interfaces and models that will be useful to 
them. All the interfaces in the multi-mission model 
repository have complete Javadoc comments, and Doxygen 
has also been run over the multi-mission models. The 
resulting diagrams are progress towards the goal of new 
adapters of making the multi-mission models as standard 
and easy to use as possible. As developers on missions write 
code that could be multi-mission, they are encouraged to 
contribute back to the multi-mission repository, and 
regression tests are used to make sure updates do not break 
use cases of the missions already using the model in 
question. All of the Blackbird core and multi-mission model 
code is available to everyone at JPL, and so are the largest 
mission-specific adaptations. This openness facilitates the 
sharing of models. 

Design Patterns 

Through working on APGEN adaptations, Blackbird’s 
multi-mission models and the mission work listed in the 
next section, there have emerged common design patterns 
that would need to be supported by any similar software.  

Dependency Layers—One common pattern is dividing the 
calculations up into dependency layers. Systems engineers 
are already used to thinking about what information needs to 
be present for the next step in a process to execute, so this 
has come naturally to adapters thus far. Each layer 
comprises a set of decompose() methods that create 
activities whose placement does not depend on each other, 
and then a remodel which runs the placed activities and sets 
resources so that the next set of resource-aware 
decompose() methods can run. Each layer of decomposition 
runs only once exactly when specified, which is performant 
and intuitive. Furthermore, this pattern provides an easy 
method to start from a known point later, since intermediate 
layers of activities can be saved off to a file then read back 
in before resuming scheduling.  
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Generator-Type Activities—Blackbird is a discrete event 
simulator, but many models or external programs it must 
interact with use fixed time steps. Additionally, even if 
information is not being used regularly to calculate other 
products, one might wish to write out values every so often 
for display and review purposes. A simple pattern to bridge 
the two is to have a ‘Generator’ activity with a model() 
section that contains a loop, where each loop iteration waits 
until a later simulated time. The amount the method waits 
can be fixed for a fixed timestep calculation, or variable. At 
each simulated time the loop stops at, the method can query 
or direct a model, and/or calculate a resource value and store 
it. 

Visualization-Only Activities—Particularly in mission 
planning but even in operations, there are situations where 
extra code has to be run to create activities that will simply 
provide context for the user, not affect any other activities or 
resources. In some cases, these can make up a significant 
fraction of the total number of activities in the timeline. 

Generic Activities—Missions experience diminishing 
returns trying to capture the behaviors that may only be 
performed once, or have negligible impact on resources. In 
these situations, a useful pattern is to create a ‘Generic’ 
activity type, where adapters set up parameterized high-
level behavior that fulfills all the goals of the adaptation. 
These generic activities let planners fill in those parameters 
for each instance as they would for a schema-defined 
activity. Common parameters for generic activities include 
amount of energy used, data volume used, unique name, and 
what sequence executes them, but specifics vary by mission.  

Configuration of Schedulers—The key to not having to 
make planning code changes when requirements change in 
operations is to have well-parameterized activities and 
schedulers. Parameterization also makes it easier to perform 
trade studies in development. Parameterization of schedulers 
is typically handled differently than for simple resource-
using activities. For simple activities, the constructor 
accepts parameter values that could be edited in a GUI via a 
typical edit activity panel. However, schedulers’ placement 
of child activities can depend on a large number of 
variables, some of which multiple schedulers are 
referencing, which makes constructors extremely brittle and 
constricts the flow of information around the simulation. 
Furthermore, these variables may be complicated data 
structures that are more easily typed in a different format 
than the most convenient structure to do calculations. A 
common pattern to address these issues is to give static 
parameters values in a text input configuration file, which 
must be read in prior to executing the schedulers. This 
reading in process can also be used to convert information 
from formats easiest for humans to input into more efficient 
data structures. Blackbird also has a native 
SET_PARAMETER command that can change public static 
variables in the adaptation so that what-if scenarios can be 
run when Blackbird is connected to an external GUI without 
having to go back out to files.  

  5. BLACKBIRD MISSION SUCCESSES  
Blackbird has been adopted by six missions that span from 
cubesats to flagships, and it has consistently decreased cost 
and risk on each of them to date, in some cases significantly. 
The framework has proved so natural and flexible that it is 
not just being used in the traditional centralized activity 
planning and sequence generation roles, but also for tasks 
that until now have been done manually in Excel or by 
homegrown scripts where it would not have been worth 
working in a harder-to-use formal activity planning system.  

Mars 2020 

Mars 2020 is an upcoming Mars rover mission which will 
launch in July 2020. The mission has an 8-month cruise to 
Mars, before landing in February 2021. Mars 2020 became 
one of the first missions to use Blackbird, and is doing so 
for both cruise and surface operations, for three functions: 
generating command sequences for the cruise and Mars 
approach, generating Deep Space Network (DSN) related 
input files for cruise and surface development, and 
automating mission planning during surface operations. 
Blackbird has already shown successful results for cruise 
thread tests, which are medium-scale tests designed to 
exercise a specific aspect of the development, and received 
an award for its use on the mission. 

During Mars 2020’s cruise to Mars, commands are sent 
from Earth which are necessary to control the spacecraft. 
There are several types of commands sent, but the most 
common types are for communicating with Earth and 
performing routine diagnostic and checkout activities. These 
commands were originally planned to be generated in a 
largely manual way for Mars 2020, but the project decided 
to fully automate their generation using Blackbird. This 
investment resulted in a decrease in the amount of time 
taken to produce a single sequence from one or two weeks 
to less than five seconds. This automation not only reduced 
the staffing required to operate during cruise, but also 
reduces the risk of human error, due to the numerous 
calculations needed to correctly determine the timing of the 
spacecraft commands to communicate with Earth. The Mars 
2020 cruise adaptation was developed in less than three 
months by three part-time recent college graduates, and 
replaced a schema-based software which provided less 
automation that had been in development for more than six 
months. During an early Mars 2020 cruise thread test, 
Blackbird was identified as the easiest 2020 tool to use by 
operators with little coding experience. 

During the mission phase “Approach, Entry, Descent and 
Landing” (AEDL), the spacecraft requires different 
commands to communicate with Earth than used in the 
cruise phase, and the logic to generate them is also different. 
However, a large portion of the code can be shared between 
the two adaptations. There are also multi-mission models 
used by the Mars 2020 adaptations which were validated 
during parallel operations with InSight during its cruise.  
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Figure 5. Activities scheduled by Blackbird for Mars 2020 Cruise sequence generation, as displayed in RAVEN 

The cruise adaptation reads in several input files 
representing geometry and times when the DSN is allocated 
to communicate with Mars 2020. The adaptation then calls 
the multi-mission ground station model to calculate 
resources necessary to show when spacecraft doppler modes 
change and which DSN stations are in view at a given time. 
Afterwards, a series of adapter-defined schedulers are run 
which provide information such as changing data rates or 
periods when a delta-DOR event will take place. Next, a 
scheduler to calculate the periods when communication will 
occur is run, which generates the final activity plan. Finally, 
the sequences and resources are written out to several files, 
before they are then validated and radiated to the spacecraft. 
Figure 5 shows an output activity plan from the code, and 
Figure 6 shows the structure of the Cruise adaptation. 

The Mars 2020 AEDL adaptation is similar, but requires 
different scheduling logic for the commands which are 
generated. As shown below in Figure 7, very little code 
needed to be written to produce different commands and 
communication behavior, since the multi-mission ground 
station model and the majority of the cruise adaptation 
schedulers can be shared across mission adaptations. 

In addition to the Mars 2020 cruise and AEDL adaptations, 
Blackbird is currently being used on the mission to generate 

geometry and DSN-related files for thread tests. These files 
are called the DSN View Periods file (VP) and the Station 
Allocation File (SAF), and they represent when each DSN 
station is in view of the spacecraft and when the spacecraft 
is allocated for communication with a given station. These 
files can take more than five hours for a trained DSN 
scheduler to create, which quickly adds up for repeated 
tests. The Blackbird adaptation is only a few hundred lines 
of code due to use of the multi-mission DSN track 
scheduler, but can generate new test cases for any time 
period in seconds. This small adaptation has been used most 
recently for the launch thread test, but will soon be used for 
cruise and AEDL tests. There is also a need for this 
capability during the surface phase for testing. This 
adaptation is still in development, but is planned for use in 
early 2020.  

Another planned use of Blackbird for Mars 2020 is for the 
mission planning communication process during operations. 
There is a need during surface operations to schedule not 
only when the spacecraft communicates directly with Earth, 
but also when it communicates with the current fleet of 
Mars orbiters. Work on this adaptation is beginning, and 
Blackbird should be able to support a more robust and easier 
to implement solution than custom scripting. 
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Figure 6. Structure of Mars 2020 Cruise adaptation. 
Red components are shared between the Mars 2020 

adaptations, and blue components represent multi-mission 
models. 

Figure 7. Structure of Mars 2020 AEDL adaptation. 
Red components are shared between the Mars 2020 
adaptations, and blue components represent multi-

mission models. 
  

 

 

Psyche 

Psyche is a Discovery-class mission that will launch a solar 
electric propulsion spacecraft in 2022 to the asteroid (16) 
Psyche, a particularly metallic small body where much can 
be learned about the history of the early solar system. After 
a three and a half-year cruise phase including a Mars 
Gravity Assist, the spacecraft will arrive at the asteroid in 
2026, bringing with it an imager, a magnetometer, a gamma 
ray and neutron spectrometer, and a high-gain antenna 
(HGA) with which to perform gravity science 
measurements. The operations concept is relatively simple 
and is based on Dawn’s, which had a highly successful low-
thrust mission to two planet-like bodies in the asteroid belt 
[16]. However, the Psyche team desires to improve on the 
Dawn process where prudent in order to decrease risk and 
cost in operations. To respond to issues caused by a lack of 
a formal mission planning function during Dawn operations, 
Psyche’s mission system anticipates having a mission 
planner continue into operations, and to use an integrated 
activity planning tool to reduce manual effort and manage 
potential conflicts earlier. As a Discovery-class mission, 
Psyche does not have the resources to build an ambitious 
planning tool by itself, like flagships frequently do. The 
mission chose to use Blackbird to do mission planning 
scheduling and simulation in development, and is currently 
defining Blackbird’s role in operations and what interfaces 
it will need to have with other tools.  

Development—In Phases B and C, Psyche’s mission 
planning team has built an adaptation that, starting from just 
SPICE kernels and a small list of manually planned 
activities, produces the reference Mission Plan Timeline, as 
displayed in Figure 8. This timeline includes activity 
placement down to the level of individual images or DSN 
tracks, resource histories such as the projected onboard data 
volume throughout the entire mission, and produces reports 
that check if plan constraints are satisfied. Each run of the 
simulation produces 123,000 activities, like science periods, 
Deep Space Optical Communications (DSOC) 
opportunities, reaction wheel unloads, and more. These 
activities combined produce 4.7 million discrete resource 
changes throughout the simulation.  
 
When new SPICE kernels are delivered, a ‘Geometry’ main 
method can be run that starts about a dozen geometry-
calculating activities, some of which follow the ‘Generator’ 
pattern described in a previous section, and some of which 
make SPICE geometry finder calls. Which geometric 
quantities are calculated for which bodies, and what 
timesteps are used, is configurable via an input file. For the 
configuration values used currently, this simulation run 
takes about 8 minutes. Most of the computation time is 
spent inside the SPICE calls, which is difficult to reduce 
since SPICE is currently not thread-safe. However, this 
process only has to be run when kernels change, which is 
every few months typically, not every time any individual 
trade study has to be run.  
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Figure 8. A screenshot of Psyche’s reference Mission Plan Timeline, generated by Blackbird and displayed in RAVEN 

Once the geometry TOL is computed, it can be read into the 
‘Mission Planning’ main routine along with a list of a small 
number of manually placed activities. This main routine is 
the one run repeatedly for most trade studies, and its output 
is what populates the reference Mission Plan. After reading 
in the files, the code starts the decompose() methods of 
about 10 schedulers, which perform functions like 
determining the science observation vs. communication 
windows during each subphase of orbital ops, placing 
DSOC keep-out-zones, and determining instrument states.  

After those, the DSN Track scheduler is run. The track 
scheduler itself and the interface to it are part of the multi-
mission suite, and Psyche passes in 50 formal but human-
readable rules that represent about 16 high-level ideas of 
when tracks should occur, examples of which could be 
“Continuous coverage using the spacecraft’s HGA from 
between 3 and 7 days after launch”, or “During Cruise 
phase, there should be 3 no-downlink thrust verification 
tracks every week.” Complex track types can be appended 
together, as there are several cases where the mission 
planning team has determined it is desirable to have a 
telemetry track, a delta-DOR, and a DSOC opportunity all 
proximate to each other. However, the durations of the 
tracks do not necessarily need to be fixed, and view periods 
may not allow tracks to be completely adjacent, so the 
depth-first search scheduler tries varying the track plan 
recursively within the provided constraints until it finds one 
that meets the rules. If a track is over-constrained and 

cannot be placed, only it is omitted from the plan and the 
rest of the tracks are still scheduled. For Psyche, the process 
of placing 2,200 tracks in this manner takes fewer than 5 
seconds.  

Once the tracks and other activities which use data and 
power are placed, a REMODEL command is issued to the 
engine which produces resource timelines such as 
instrument states, data onboard per category, available array 
power, and more. The model() method for HGA Track  
references a custom telecommunications model through the 
multi-mission telecommunications interface and the multi-
mission rate-based data model through the multi-mission 
data model interface. The activities that affect power also go 
through the multi-mission power interface, so while the 
power model is low-fidelity now, once a higher-fidelity one 
is available, none of the activity definitions need to change. 

Once the modeling pass is over, the main method runs a few 
decomposition sections that place activities which do not 
affect resource values but help provide context and a more 
intuitive sense of the situation to the RAVEN visualization 
of the plan. Finally, in addition to the TOL, a data budget 
spreadsheet and scorecard that compares the DSOC 
opportunities provided against requirements are written out. 
The total scheduling, simulation and output together takes 
about one minute on a 2015 MacBook Pro. Prior to this 
capability, mission planners were using a mix of isolated 
C++, MATLAB scripts, and Excel which, while capable, 
were not designed to be used by a broader team or 



14 
 

Figure 9. High-level view of structure of and data 
flow through Psyche Blackbird adaptation 

maintained into operations. Before the Blackbird work 
began, doing simulation with a new set of assumptions 
required files being passed between multiple team members, 
so one could not rapidly iterate on a design. The current 
structure of the new system is presented in Figure 9. 

 

The mission planning team has used these new capabilities 
to support several trade studies, including the impact of 
regularizing observation sequences on the data budget, the 
feasibility of adding or removing DSN tracks during 
different phases of the mission, the sensitivity of orbital 
operation science activity timing to ephemeris uncertainty, 
the impact of using multiple data rates per pass instead of a 
single one, and more. The simulation output is also used to 
verify that there are sufficient DSOC opportunities to meet 
requirements and that the mission margin policies are being 
met. 

Work is ongoing to use the output of the simulation to 
provide at-a-glance information about whether more 
requirements were met, like total time available for thrust. 
Blackbird is currently being used to help evaluate 
requirements for higher-fidelity subsystem models, and will 
be extended to communicate with those models once 
available.  

Operations—A Blackbird adaptation is being built to 
perform several key roles in Phase E, including background 
sequence generation, thrust sequence generation, activity 
plan constraint checking, subsystem simulation, and serving 
as an interface to plan review tools. Psyche will be able to 
leverage activity definitions, constraints, and connections to 
other models set up for mission planning work for the 
operations activity planning work. As a proof of concept, 
one Psyche sequence engineer has already built the 
capability with Blackbird to generate valid Dawn 
background sequences for any set of Dawn input files. By 
leveraging the Blackbird multi-mission DSN model, this 
capability took less than 40 hours of work to implement. 
Psyche expects that using Blackbird will significantly 
decrease cost and risk over the alternative used for Dawn, 
which was a patchwork of Excel and standalone scripts that 
did not share code with other teams or missions. In large 
part due to how long it took these tools to generate products, 
Dawn’s sequence generation and validation process took 
weeks per sequence, which ideally can be significantly 
decreased. Additionally, the Dawn toolset had to be 
frequently rewritten during different mission phases or when 
orbits changed, which can be avoided for the Psyche 
mission by appropriately parameterizing the schedulers. 

InSight 

InSight, JPL’s most recent Mars surface mission, is 
dedicated to exploring the Martian interior. On InSight, the 
mission planner’s primary responsibility is negotiating and 
scheduling Earth-Mars communication windows with other 
operating missions. This involves negotiating and 
scheduling 1) use of the DSN for Direct-to-Mars X-Band 
communication and 2) Ultra High Frequency (UHF) relay 
communication to the five current Mars orbiters. Using 
Martian orbiters as relay assets allows InSight to take 
advantage of the much more powerful antennas onboard the 
relay assets to transmit several orders of magnitude more 
data than is possible via Direct-to-Earth X-Band with the 
lander’s own antenna. However, relay asset use must be 
negotiated amongst all the landed Mars missions. At 
landing, most mission planning tasks were completed 
manually in Excel workbooks. InSight has since taken 
advantage of Blackbird’s powerful capabilities to automate 
mission planning tasks and generate command products.  
 
The first task that was automated for mission planning was 
the optimization of Direct-to-Mars X-Band uplink windows. 
After DSN negotiations are complete, DSN schedulers 
provide mission planners information about DSN tracking 
windows. Within allocated DSN tracks, X-Band uplink 
windows should be scheduled for maximum uplink data 
volume and Radio Science Experiment (RISE) science 
return. Blackbird’s simulation engine, built-in DSN model, 
and constraint-checking capabilities made it the best 
framework with which to automate this task.  
 
The X-Band Blackbird scheduler works with three sets of 
input data: a set of Data Relay Capability Files (DRCF) that 
provide lists of windows during which uplink and downlink 
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Figure 11. Visualization of InSight’s WUTT generation automation, as displayed in RAVEN 

Figure 10. Structure of InSight WUTT adaptation. Red 
designates code shared with other mission planning routines. 

are supported at different rates, the SAF, and an Overflight 
Summary File (OSF) containing timing and parameters for 
all the orbiter relay overflights. For the DCRF, Blackbird’s 
resource modeling capabilities track when uplink is 
supportable and at what rates. Blackbird’s multi-mission 
DSN model reads the SAF and places Station Allocation 
activities automatically. Multi-mission code reads in the 
OSF and then a scheduler sets resources to indicate X-Band 
keep-out zones. The scheduler can then use resource-aware 
decomposition to avoid scheduling X-Band passes in 
parallel with UHF overflights. With these three sets of data, 
Blackbird calculates the best X-Band communication 
windows by matching DSN station allocations to the highest 
uplink rates that are supported within those allocations. This 
process takes hours in Excel and seconds with Blackbird. 
 
The second task that was automated for mission planning 
was the creation of the Wake-Up Time Table (WUTT), a 
contingency command product that contains a set of 
wakeup, shutdown, and transmission commands. In the 
event that the lander stops executing its main onboard 
sequences, InSight will wake up and shut down according to 
the commands in the WUTT, and await instructions from 
Earth via the transmission commands. It would take a 
relatively serious anomaly for InSight to fall back to the 
WUTT, and therefore the transmission capabilities in the 
WUTT must be sufficient for rapid anomaly responses.  
 
The WUTT must be power conservative in addition to 
containing sufficient transmission capabilities. There are 
scheduling constraints on wake-up entries, including: 
number of communication windows per day, maximizing 
data return and uplink volume, balancing X-Band and UHF 
transmissions, minimum and maximum sleep durations, 
total number of entries, and more. The WUTT can be 
generated using roughly the same sets of data that are used 
by the X-Band scheduler: 1) DRCFs to determine best X-
Band times, 2), a SAF to determine available X-Band times 
and 3) an OSF from which to pick UHF relay overflights. 
From these inputs, the scheduler produces a WUTT that 

meets all of the requirements above, as well as a TOL and a 
review product. See Figure 10 for the structure of the 
InSight WUTT adaptation, and Figure 11 for the activities 
comprising a sample WUTT that Blackbird produced.  

 

The WUTT automation was validated with thorough 
regression and unit testing that was only possible due to the 
use of a standard programming language. These tests 
reduced the risk to the mission of switching to the 
automation and reduced the costs of verifying changes. 
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Figure 12. Output of NISAR’s Blackbird adaptation, as displayed in RAVEN, showing the high-level activities 

The third target task for mission planning automation is the 
creation of the Overflight Request File (ORF), which is 
upstream of the other two processes. In the manual process, 
mission planners must examine the list of geometrically 
available overflights, then deconflict with passes claimed by 
other landed assets to determine which to request, then 
perform calculations to determine which are the most viable. 
As currently envisioned, the automation will give the 
mission planner all the calculated information in one place 
they need to make the decision, then the passes will be 
manually chosen based on that.  
 
NISAR 

NISAR is an Earth-orbiting satellite whose mission is to use 
synthetic aperture radar (SAR) to map the Earth’s surface 
every 12 days. After launch in 2022, the spacecraft will first 
undergo a commissioning phase that is required to be 
completed within 90 days before it begins science 
operations. During commissioning, operators need to deploy 
the spacecraft’s antenna, perform checkouts of its 
maintenance systems, and perform more than 15 types of 
calibrations of the instruments [17]. Each type of calibration 
has prerequisites on the completion of other calibrations and 
engineering activities, and each require observations at 
different types of targets. In February 2019, the NISAR 
mission planning team began using Blackbird to help 
understand the time sensitivities of this highly 
interdependent system to variations in shift schedules, 
missed observation opportunities, activity durations, and 
other factors. Prior to starting to work with Blackbird, the 
creation of a mission plan that was self-consistent and 
satisfied the constraints was a manual process that took 
days, which made it challenging to react to changing 
calibration requirements and duration estimates.  

Each calibration that must be scheduled consists of multiple 
instances each of five types of sub-activities: data 

acquisition, downlink, ancillary data delivery, data 
processing, and analysis. Data acquisition can only be 
scheduled during view periods provided by Systems Tool 
Kit, which can be for homogenous, point, or radar-bright 
ground targets, and it can only be scheduled when there is 
enough data storage and the relevant SAR is not being used 
for another acquisition. Downlink duration is modeled as 
proportional to the amount of data collected, and it can 
occur in parallel with waiting for ground reception of 
ancillary orbit products. Data processing takes a 
configurable constant amount of time per calibration type. 
Finally, analysis of the results for that observation can 
happen immediately afterwards for some calibration types, 
but for others the scheduler must wait until work hours for 
the operations personnel begin. Some, but not all, of the 
analyses can happen in parallel with each other or other 
components of the calibration. If an analysis must wait until 
another condition is true to begin, a nested forward dispatch 
scheduler is created to place it. After some calibrations have 
finished all their analysis segments, command preparation at 
JPL and uplink radiation at ISRO must be scheduled during 
their personnel’s respective shifts, which are configurable. 
Some of these activities are visible in Figure 12. 

In Blackbird, three different superclasses of calibrations 
were created to capture each underlying behavior: one that 
allowed parallel analyses, one that mandated serial analyses, 
and one that has one long analysis for all observations. For 
each calibration required, a line in an input configuration 
file specifies which of those behaviors is needed, whether 
uplink is required after the calibration is over, durations for 
the sub-activities, what target types are required, and the 
number of observations required. Each calibration becomes 
one activity with a Condition required for the calibration to 
begin, and all of them and their children’s 75 total forward 
dispatch sections execute in parallel during a single 
remodel(), as shown in Figure 13.  
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Figure 14. Abbreviated structure of and data flow 
through Lander Blackbird adaptation 

Figure 13. Structure of NISAR Blackbird adaptation 

 

Blackbird’s on-line scheduling capability makes expressing 
this problem relatively simple, even though NISAR was not 
one of the original mission use cases considered. Since the 
requirement is simply to minimize time spent in 
commissioning phase, a greedy approach is sufficient and 
no search is needed. That the engine automatically starts the 
threads when the conditions are available means the adapter 
can avoid having to manually work out algorithms that 
would place the sub-activities in a conflict-free way.  

The adaptation was built by one engineer in less than two 
months half-time, and for the Mission System Critical 
Design Review, the project was able to use it to examine the 
effects of the aforementioned parameters on the timeline. 
Rescheduling the entire commissioning phase, about 1,000 
constituent activities, for a given configuration file takes 
less than 10 seconds on a 2015 MacBook Pro. The 
simulation will continue to be refined going forward.  

Europa Lander 

Europa Lander is a mission concept that aims to sample the 
surface of Europa in the 2030s. The development team has 
been through several design iterations. For the most recent 
one, the concept was switched from a lander that would use 
a relay orbiter to one that would communicate Direct-to-
Earth. Around the time of that change, it was decided to 
switch to Blackbird for future systems simulation work.  

The Blackbird model takes as input a landing time and 
SPICE kernels describing the location of the lander, builds 
an activity plan, and simulates resources at the level of 
individual power devices and data channels to arrive at 
estimates for the lifespan of the Lander and its total science 
return. The activity plan is built using rules encoded into the 
scheduler based on geometric conditions. The scheduler 
decomposes into a tree of activities, as shown in Figure 14.  

 

The encapsulated nature of the activities means that large 
changes to the scenario can be created through changes to a 
single activity. For instance, modifying just the high-level 
Sampling Cycle activity can change which view periods are 
used for sampling, processing, or transmission. The 
adaptation heavily relies on the ability of activities to spawn 
other activities in complex combinations, which is greatly 
enabled by being able to write code to set behavior. 

The Lander adaptation uses the multi-mission data model 
and the multi-mission power interface, which is 
implemented by a simple primary battery model that only 
tracks energy consumption. Since much of the energy could 
be used by component heaters, and because there are 
thermal constraints on the hardware that drive the mission 
timeline, a rudimentary thermal model also had to be 
included. Blackbird used inter-process communication to 
call the Mission Concept Review reference two-node 
thermal model written in Python and include those results in 
its timelines. The Blackbird adaptation is less than 1,000 
lines of code and runs in 1.7 seconds when executing 
everything except the thermal model on a 2015 MacBook 
Pro. 
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Figure 16. Structure of current ASTERIA adaptation 

Figure 15. Subset of output of Europa Lander’s Blackbird adaptation, as displayed in RAVEN 

 

This adaptation is used primarily for trade studies. One of 
the more detailed studies involved examining the mission 
timeline in the event of an HGA failure which would 
necessitate using a low-gain antenna for downlink. The 
results of the study motivate future deeper exploration into 
antenna configuration and the possibility of using a 
medium-gain antenna for the lander. A sample plan created 
by the adaptation as displayed in RAVEN is shown in 
Figure 15, along with the resources predicted to be used. 

Since Monte Carlo methods are of interest to the Lander 
team, the model was successfully run massively in parallel, 
where parameters for each run were chosen using Latin 
Hypercube Sampling. A python script sampled distributions 
to obtain parameters for each run and off kicked hundreds of 
Blackbird runs in parallel, each of which was deterministic 
given the parameters. The script then collated the data from 
the runs and created scatter plots showing quantities of 
interest like battery lifetime under different assumptions.  

ASTERIA 

The Arcsecond Space Telescope Enabling Research In 
Astrophysics (ASTERIA) is a 6U cubesat that was deployed 
from the International Space Station (ISS) into low Earth 
orbit in November 2017 for a three month prime mission 
[18]. Its prime mission involves imaging stars to detect 
orbiting exoplanets as a proof of concept to show that a 
cubesat can accomplish such a task. As of October 2019, the 
satellite is in its third extended mission and still detects 
orbiting exoplanets. In addition, the mission also hosts other 
experiments of various natures. 

The Blackbird model for ASTERIA was developed because 
of a desire for more flexible and more automated planning 
tools. ASTERIA sequences are generated on the ground by 
tools written in MATLAB that partially validate the 
sequences. Typically, a sequencing engineer authors and 
validates daily background sequences for the spacecraft. 
The engineer must schedule the activities as well as check 
some flight rules manually. An approving mission manager 

must also double check these flight rules. Science sequences 
likewise have to be checked by a sequencing engineer and a 
manager. The current tools are too brittle to be adapted to 
automate these manual processes. 

 

In its current stage of development, the Blackbird adaptation 
is ready and being validated for use in operations. Blackbird 
produces a valid ASTERIA sequence in 5.1 seconds on a 
2017 MacBook Pro. The adaptation is not fully integrated 
into the operations workflow and cannot yet be used to 
generate flight-ready sequences. However, there is a clear 
path forward to relieving the onus of scheduling background 
sequence activities for a sequencing engineer. Figure 16 
displays the structure of the adaptation, and Figure 17 shows 
the activities which write entries in the output sequence. 
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Figure 17. Activities scheduled by ASTERIA’s Blackbird adaptation, as displayed in RAVEN 

  

 

 

 

 

 

 

In order to generate the sequence, Blackbird’s sequencing 
infrastructure had to be extended to write out the ASTERIA 
‘seq’ format, which did not have prior support. Adding the 
classes needed to write out sequences in this format was 
completed start-to-finish in 2 hours. The entire rest of the 
adaptation to date has been built in less than one work-week 
by a single engineer who had little experience with Java 
before beginning this work.  

Planned improvements to the adaptation will allow sequence 
engineers to author science observation sequences with a 
flexible GNC model. One of the most difficult constraints 
on science observation sequencing is avoiding a fault that 
trips when the angular momentum of the spacecraft is too 
high. This can occur when doing a prolonged observation at 
a single star, and will worsen as ASTERIA’s orbit degrades. 
Better automation will allow the spacecraft to continue 
making full use of its capabilities, instead of losing 
observations with sub-optimal activity placement. By 
leveraging the modeling capabilities of Blackbird, the 
ASTERIA operations team expects to see increased science 
return with less effort needed from sequencing engineers. 

 6. CONCLUSIONS  
Blackbird has proven itself as a tested operations-grade tool 
that reduces cost and risk on six missions currently. 
Designed with ease of use in mind, it has proved a natural 
choice for additional planning tasks beyond the traditional 
short-range activity planning. Its success is in large part due 
to the principles followed while in development, and 
specific design choices that shape how it behaves.  

There is much work to do for each of the missions that use 
Blackbird, which is detailed in the corresponding 
subsections above. As that work occurs, a continued focus 
will be improving the multi-mission toolset to make it 
increasingly more capable and easier to use. In terms of the 
core framework, there are several ideas in work for 
improving usability, including increasing flexibility of the 
way activities can interact with conditions, and improving 
the ease of use for making complicated resources. The team 
is excited to work in this new open environment where 
engineers are encouraged to build on each other’s work.  
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